Deep Learning for Images Classification

Learn about image classification and why it’s crucial in computer vision. Discover how deep learning techniques can revolutionize image recognition, automate tasks, and enhance various applications like visual inspection, automated driving, and robotics. Dive into the realm of visual AI with deep learning and MATLAB®.

  • 1320

Image classification in MATLAB represents a pioneering approach to computer vision. Leveraging the extensive capabilities of MATLAB, it enables the identification and categorization of objects and scenes within images, MATLAB empowers users to streamline image recognition, automate complex tasks, and enhance various applications, making it a powerful platform for mastering image classification in the realm of computer vision.

Why image classification matters

Image recognition can help engineers speed up tedious tasks and leverage automation to structure and organize information. This technique identifies objects or scenes in images and then processes and classifies the information extracted to make decisions as part of a larger system. Image recognition is a fundamental component for solving many computer vision-based AI problems and is the main driver in deep learning applications such as:

  • Image classification is the process of identifying and categorizing various details in an image.
  • Visual inspection: the process of inspecting thousands of parts for defects on an assembly line.
  • Automated driving: the process of identifying road signs, visualizing sensor data, and detecting lanes, vehicles, and pedestrians.
  • Robotics: the process of identifying objects and enhancing autonomous navigation.

Image recognition vs. object detection

Image recognition and object detection are similar techniques that complement one another. Image recognition identifies an object or scene in an image or video and assigns a single high-level label. Object detection identifies each and every object in the image or video and finds instances and locations of these objects.

 

Why use deep learning techniques for image recognition?

There are many methods and techniques to identify and categorize images and videos. However, when you are facing a complex problem, you need a complex solution, and this is where deep learning comes into the picture.

Deep learning techniques provide highly accurate and robust results. A deep learning approach works best with a large amount of training data and, for that reason, often involves the use of a pre-trained convolutional neural network (“CNN” or “ConvNet”) to train an image category classifier to identify selected features in images and videos automatically.

A deep learning workflow for image recognition includes:

  • Accessing and exploration of data
  • Labeling and preprocessing of data
  • Developing of predictive modules
  • Integration of models into your system.

Deep learning techniques are not an easy thing to understand, but you can get started and learn more about the technology by getting familiar with these simple examples:

Featured products

All products mentioned in this user story are developed by MathWorks.

Learn more

SciEngineer’ team can help you tackle your complex engineering projects.

Consulting

Consulting SciEngineer

Through our various Consulting Services, our experts will guide your team through industry-accepted best practices to improve application and model quality, manage increasing complexity, shorten the time-to-market cycle, and reduce the cost of implementation and maintenance.

Training

Training Courses and Events SciEngineer

Our training courses are designed to help organizations and individuals close skills gaps, keep up to date with industry-accepted best practices, and achieve the greatest value from MATLAB and Simulink.

Recommended Events

Recommended Posts

Ai robotics working on a car

AI: Driving the Industry Towards Greater Success

Artificial intelligence (AI) is seen as a promising technology that can help leading OEMs to maintain their position as market leaders. In this post, read about how AI is changing the manufacturing sector, as well as its potential advantages and potential drawbacks.

Machine Learning with MATLAB

Explore how MATLAB transforms the world of machine learning. Discover 5 areas where MATLAB can help solve diverse learning problems. From interactive apps to Simulink integration, we’ve got you covered.

MATLAB and Simulink for Artificial Intelligence

Learn about MATLAB and Simulink’s capabilities for creating AI-driven products and services, including the benefits of using these platforms, key components of the AI workflow, and the integration of AI models into real-world applications.

MATLAB and Simulink for Automotive

MATLAB and Simulink for Automotive

Discover how MATLAB and Simulink drive automotive innovation. Learn how these tools expedite vehicle development and help OEMs meet evolving market demands.