sciengineer

= /\

Polyspace for C/C+
Code Verificatio \ -

SciEngineer’s training courses are designed to helg organizations and individuals close skills gaps, keep up-to-date with the industry-accepted best practices and achieve
the greatest value from MathWorks® and COMSOL® Products.




Polyspace for C/C++ Code

Polyspace for C/C++ Prerequisites
Code Verification
S
@ This two-day course discusses the use of Strong knowledge of C or C++
= Polyspace Code Prover to prove code DURATION LEVEL
> correctness, improve software quality

2 days Advanced

metrics, and ensure product integrity. This
course describes techniques for creating a

verification project, reviewing and 0
understanding verification results,
emulating target execution environments,
handling missing functions and data,
managing unproven code, applying MISRA-C
rules and reporting analysis results.

Day 1 Day 2

Polyspace Workflow Overview Managing Polyspace Code Prover
Polyspace Bug Finder Analysis Verifications and Results

Analyzing Polyspace Code Prover Adding Precision to Polyspace

Results Code Prover Verifications

Code Verification Checks Integration Analysis
Application Analysis

SciEngineer’s Training Service




Polyspace for C/C++ Code

Verification

SciEngineer’s Training Service

TRAINING CONTENT - DAY 1

Polyspace
Workflow Overview

OBJECTIVE: Become familiar with Polyspace

Bug Finder and Polyspace Code Prover and
work through an introductory example.

» Software development workflows with
Polyspace

* Simple verification example

* Analyzing defects and run-time errors

Polyspace Bug
Finder Analysis

OBJECTIVE: Analyze code that may not be ANSI

C compliant and account for the runtime
environment, and correct defects and coding
rule violations using Polyspace Bug Finder.

« Common run-time environment artifacts

* Handling processor-specific code

* Defining the execution context

» Setting target hardware information

* Analyzing and managing Polyspace Bug
Finder defects

* Detecting coding rule violations

* Measuring code metrics

Analyzing Polyspace
Code Prover Results

OBJECTIVE: Become proficient at interpreting
Polyspace Code Prover results.

Overview of abstract interpretation
Call tree analysis

Source code navigation

Execution paths

Variable ranges

Global variables



Polyspace for C/C++ Code

Verification

SciEngineer’s Training Service

TRAINING CONTENT - DAY 1

Code Verification
Checks

OBJECTIVE: Find run-time errors using
diagnostics available in Polyspace Code
Prover.

Overview of C source code checks
Location of checks in source code
Description of checks

Relevant verification options



Polyspace for C/C++ Code

Verification

SciEngineer’s Training Service

TRAINING CONTENT - DAY 2

Adding Precision to
Polyspace Code
Prover Verifications

OBJECTIVE: Learn how Polyspace Code Prover
treats missing code during verification, and
how to affect this behavior to produce more
meaningful verifications.

Robustness verification and
contextual verification
Function stubbing

Data range specification
Manual stubbing

Integration Analysis

OBJECTIVE: Learn how to manage verifications
with increasing code complexity, and how to
interpret and compare integrated analysis
with robust analysis.

* Managing code modules

* Analyzing integration defects and rule
violations with Polyspace Bug Finder and
Polyspace Code Prover

* Importing comments

Application Analysis

OBJECTIVE: Review procedures and options
that are useful when verifying complete
applications.

* Setting up an application verification

* Improving the results of an application
verification

* Detecting concurrency issues

 Comparing robustness and contextual
verification

* Creating documentation



Polyspace for C/C++ Code

Verification

SciEngineer’s Training Service

TRAINING CONTENT - DAY 2

Managing Polyspace
Code Prover
Verifications and Results

OBJECTIVE: Handle verification results that
contain large amounts of unproven checks.

* Determining verification effort

* Performing a quick review

* Performing a selective orange review
» Setting verification precision

* Prioritizing orange checks

* Reviewing orange checks



sciengin&

Expand your
knowledge




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

