
SciEngineer’s training courses are designed to help organizations and individuals close skills gaps, keep up-to-date with the industry-accepted best practices and achieve
the greatest value from MathWorks® and COMSOL® Products.

Po
ly

sp
ac

e
fo

r
C

/C
++

 C
od

e
Ve

ri
fi

ca
ti

on

This two-day course discusses the use of
Polyspace Code Prover to prove code
correctness, improve software quality
metrics, and ensure product integrity. This
course describes techniques for creating a
verification project, reviewing and
understanding verification results,
emulating target execution environments,
handling missing functions and data,
managing unproven code, applying MISRA-C
rules and reporting analysis results.

Strong knowledge of C or C++

TOPICS

• Polyspace Workflow Overview
• Polyspace Bug Finder Analysis
• Analyzing Polyspace Code Prover

Results
• Code Verification Checks

• Managing Polyspace Code Prover
Verifications and Results

• Adding Precision to Polyspace
Code Prover Verifications

• Integration Analysis
• Application Analysis

DURATION LEVEL

2 days Advanced

S
ci

En
gi

n
ee

r’s
 T

ra
in

in
g

S
er

vi
ce

OBJECTIVE: Become familiar with Polyspace
Bug Finder and Polyspace Code Prover and
work through an introductory example.

• Software development workflows with
Polyspace

• Simple verification example
• Analyzing defects and run-time errors

TRAINING CONTENT - DAY 1

OBJECTIVE: Analyze code that may not be ANSI
C compliant and account for the runtime
environment, and correct defects and coding
rule violations using Polyspace Bug Finder.

OBJECTIVE: Become proficient at interpreting
Polyspace Code Prover results.

• Common run-time environment artifacts
• Handling processor-specific code
• Defining the execution context
• Setting target hardware information
• Analyzing and managing Polyspace Bug

Finder defects
• Detecting coding rule violations
• Measuring code metrics

• Overview of abstract interpretation
• Call tree analysis
• Source code navigation
• Execution paths
• Variable ranges
• Global variables

Po
ly

sp
ac

e
fo

r
C

/C
++

 C
od

e
Ve

ri
fi

ca
ti

on
S

ci
En

gi
n

ee
r’s

 T
ra

in
in

g
S

er
vi

ce

OBJECTIVE: Find run-time errors using
diagnostics available in Polyspace Code
Prover.

• Overview of C source code checks
• Location of checks in source code
• Description of checks
• Relevant verification options

TRAINING CONTENT - DAY 1
Po

ly
sp

ac
e

fo
r

C
/C

++
 C

od
e

Ve
ri

fi
ca

ti
on

S
ci

En
gi

n
ee

r’s
 T

ra
in

in
g

S
er

vi
ce

OBJECTIVE: Learn how Polyspace Code Prover
treats missing code during verification, and
how to affect this behavior to produce more
meaningful verifications.

• Robustness verification and
contextual verification

• Function stubbing
• Data range specification
• Manual stubbing

TRAINING CONTENT - DAY 2

OBJECTIVE: Learn how to manage verifications
with increasing code complexity, and how to
interpret and compare integrated analysis
with robust analysis.

OBJECTIVE: Review procedures and options
that are useful when verifying complete
applications.

• Managing code modules
• Analyzing integration defects and rule

violations with Polyspace Bug Finder and
Polyspace Code Prover

• Importing comments

• Setting up an application verification
• Improving the results of an application

verification
• Detecting concurrency issues
• Comparing robustness and contextual

verification
• Creating documentation

Po
ly

sp
ac

e
fo

r
C

/C
++

 C
od

e
Ve

ri
fi

ca
ti

on
S

ci
En

gi
n

ee
r’s

 T
ra

in
in

g
S

er
vi

ce

OBJECTIVE: Handle verification results that
contain large amounts of unproven checks.

• Determining verification effort
• Performing a quick review
• Performing a selective orange review
• Setting verification precision
• Prioritizing orange checks
• Reviewing orange checks

TRAINING CONTENT - DAY 2
Po

ly
sp

ac
e

fo
r

C
/C

++
 C

od
e

Ve
ri

fi
ca

ti
on

S
ci

En
gi

n
ee

r’s
 T

ra
in

in
g

S
er

vi
ce

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

