

Designing LTE and LTE Advanced Physical Layer Systems with MATLAB

SciEngineer's training courses are designed to help organizations and individuals close skills gaps, keep up-to-date with the industry-accepted best practices and achieve the greatest value from MathWorks® and COMSOL® Products.

Designing LTE and LTE Advanced Physical Layer Systems with MATLAB

This three-day course provides an overview of the LTE and LTE-Advanced physical layer. You will learn how to generate reference LTE waveforms and build and simulate an endto-end LTE PHY model. This course focuses on OFDMA and SC-FDMA multi-carrier techniques, MIMO multi-antenna systems, uplink and downlink LTE physical channels and methods for golden reference verification with the standard.

Prerequisites

MATLAB Fundamentals and knowledge of wireless communications systems

TOPICS

Day 1

- Introduction to 3GPP Long Term Evolution
- OFDM Theory Review
- LTE Frames, Slots and Resources

Day 2

- Procedures
- MIMO Background
- LTE Downlink Physical Layer Modulation
- MIMO in LTE R8

Day 3

- LTE Multiplexing and Channel Coding
- LTE Uplink Physical Layer Modulation
- LTE Release 9
- LTE Advanced Release 10

Introduction to 3GPP **Long Term Evolution**

OBJECTIVE: Provide an introduction to the LTE standard and its relationship to other 3GPP standards. Understand general requirements and objectives for LTE. Get an overview of different protocol layers within LTE.

OFDM Theory Review

OBJECTIVE: Understand the basics of OFDM modulation, cyclic prefix insertion, and windowing.

- 3GPP evolution from R5 to R11
- Requirements
- Spectrum flexibility
- General characteristics
- Multi-user scheduling
- Resource allocation
- Frequency reuse planning

 Motivation for multi-carrier vs. single-carrier

- Introduction to OFDM
- Generation of OFDM symbols using the IFFT
- Cyclic prefix (guard interval)
- Windowing to reduce out of band emissions
- Advantages and disadvantages of OFDM

LTE Frames, **Slots and Resources**

OBJECTIVE: Understand the concepts of frames, subframes, slots, and physical resource grids in LTE downlink and uplink.

• LTE generic frame structure

- Downlink and uplink slot formats
- Resource elements and resource blocks
- Downlink OFDM symbol construction
- Uplink SC-FDMA symbol construction
- LTE downlink resource capacity

Procedures

OBJECTIVE: Understand different physical layer procedures for both downlink and uplink specified in LTE.

- Cell search
- Cell identities in cell search
- Symbol synchronization
- Frame and cell synchronization
- System information acquisition: MIBs and SIBs
- Timing synchronization procedures
- Uplink power control

MIMO Background

OBJECTIVE: Understand different MIMO techniques namely diversity, beamforming, and spatial multiplexing. Learn about singular value decomposition as the solution to the generic MIMO problem.

- Spectral efficiency and capacity
- Transmit and receive diversity
- The Alamouti Scheme
- Delay Diversity and Cyclic Delay Diversity
- Beamforming
- Spatial multiplexing
- Singular value decomposition
- Equalizing, predistortion, precoding, and combining

LTE Downlink Physical Layer Modulation

<u>OBJECTIVE</u>: Understand processing elements for different downlink physical channels and downlink physical signals. Learn about resource grid and control channel element.

• Downlink physical channel processing chain
 Codewords and layers
 Scrambling and modulation
 Transmission schemes
 Diversity, spatial multiplexing, and
beamforming
 Synchronization signals: PSS and SSS
 Reference signals: cell and UE specific,
MBSFN
• Downlink physical channels: PBCH, PCFICH,
PDSCH, and PDCCH
Control ragion

- Control region
- REGs and CCEs, PDCCH search spaces
- Resource grid mapping

MIMO in LTE R8

<u>OBJECTIVE:</u> Learn different MIMO techniques specified in the LTE standard.

- Codewords to layers mapping
- Precoding for spatial multiplexing
- Precoding for transmit diversity
- Beamforming in LTE
- Cyclic Delay Diversity-based precoding
- Precoding codebooks

LTE Multiplexing and Channel Coding

OBJECTIVE: Understand the coding, multiplexing, and mapping to physical channels for all transport channels in downlink and uplink.

- Transport channels and control information: DL-SCH, PCH, BCH, DCI, CFI, HI, ULSCH, and UCI
- Mapping of transport channels to physical channels
- CRC coding and masking
- Code block segmentation
- Convolutional and turbo coding
- Rate matching, bit selection and pruning
- Transport channels and control information processing chains
- HARQ: incremental redundancy, stopand-wait

LTE Uplink Physical Layer Modulation

OBJECTIVE: Understand processing eleme for different uplink physical channels an uplink physical signals.

- Uplink physical channel processing c
- Scrambling and modulation
- SC-FDMA review
- Uplink Reference signals: DRS and SRS
- Uplink physical channels: PUSCH, PUCCH, and PRACH
- Control information: CQI, RI, PMI, HI, and SR
- Control signaling on PUSCH and PUCCH
- PUCCH formats
- Uplink physical channels and physical signals

LTE Release 9

ents	OBJECTIVE: Learn about new features
d	introduced in LTE Release 9.

chain	

 Release 9 feature 	S
---------------------------------------	---

- MBMS support
- Home eNodeB
- Positioning support
- Transmission schemes

LTE Advanced - Release 10

<u>OBJECTIVE:</u> Learn about new features introduced in LTE Release 10.

- IMT-Advanced Technologies
- Carrier aggregation
- Uplink spatial multiplexing
- Spatial Orthogonal Resource Transmit
 Diversity
- Downlink enhanced MIMO
- CSI reference signals

Expand your knowledge

