
SciEngineer’s training courses are designed to help organizations and individuals close skills gaps, keep up-to-date with the industry-accepted best practices and achieve the 
greatest value from MathWorks® and COMSOL® Products.



G
en

er
at

in
g 

H
D

L 
C

od
e 

fr
om

 S
im

u
lin

k

This two-day course shows how to generate 
and verify HDL code from a Simulink model 
using HDL Coder and HDL Verifier. This 
course focuses on preparing Simulink 
models for HDL code generation, fixed-point 
precision control, generating HDL code for 
multirate models, optimizing generated 
HDL code, interfacing external HDL code and 
verifying HDL code with cosimulation.

Signal Processing with Simulink or 
equivalent experience using Simulink

TOPICS

• Preparing Simulink Models for 
HDL Code Generation 

• Fixed-Point Precision Control 
• Generating HDL Code for Multirate 

Models 

• Optimizing Generated HDL Code 
• Using Native Floating Point 
• Interfacing External HDL Code with 

Generated HDL 
• Verifying HDL Code with 

Cosimulation

DURATION LEVEL

2 Days Advanced

Sc
iE

ng
in

ee
r’s

 T
ra

in
in

g 
Se

rv
ic

es



OBJECTIVE: Prepare a Simulink model for HDL 
code generation. Generate HDL code and 
testbench for simple models requiring 
no optimization.

• Preparing Simulink models for HDL code 
generation 

• Generating HDL code 
• Generating a test bench 
• Verifying generated HDL code with an 

HDL simulator 

TRAINING CONTENT - DAY 1

OBJECTIVE: Establish correspondence between 
generated HDL code and specific Simulink 
blocks in the model. Use Fixed-Point Tool to 
finalize fixed point architecture of the model.

OBJECTIVE: Generate HDL code for 
multirate designs.

• Fixed-point scaling and inheritance 
• Fixed-Point Designer workflow 
• Fixed-Point Tool 
• Command-line interface

• Preparing a multirate model for generating 
HDL code 

• Generating HDL code with single or 
multiple clock pins 

• Understanding and applying techniques 
used for clock domain crossing

G
en

er
at

in
g 

H
D

L 
C

od
e 

fr
om

 S
im

u
lin

k
Sc

iE
ng

in
ee

r’s
 T

ra
in

in
g 

Se
rv

ic
es



OBJECTIVE: Use pipelines to meet design 
timing requirements. Use specific hardware 
implementations and share resources 
for area optimization.

• Generating HDL code with the HDL 
Workflow Advisor 

• Meeting timing requirements via 
pipelining 

• Choosing specific hardware 
implementations for compatible 
Simulink blocks 

• Sharing FPGA/ASIC resources in 
subsystems 

• Verifying that the optimized HDL code is 
bit-true cycle-accurate 

• Mapping Simulink blocks to dedicated 
hardware resources on FPGA 

TRAINING CONTENT - DAY 2

OBJECTIVE: Implement floating point values 
and operations in your HDL code.

OBJECTIVE: Incorporate hand-written HDL code 
and/or vendor party IP in your design.

• Why and when to use native floating point 
• Target-independent HDL code generation 

with HDL Coder 
• Fixed-point vs. floating point comparison 
• Optimization of floating point 

implementations

• Interfacing external HDL code

G
en

er
at

in
g 

H
D

L 
C

od
e 

fr
om

 S
im

u
lin

k
Sc

iE
ng

in
ee

r’s
 T

ra
in

in
g 

Se
rv

ic
es



OBJECTIVE: Verify your HDL code using an 
HDL simulator in the Simulink model.

• Verifying HDL code generated with HDL 
Coder 

• Comparing manually written HDL code 
with a "golden model" 

• Incorporating HDL code into Simulink 
for simulation 

TRAINING CONTENT - DAY 2
G

en
er

at
in

g 
H

D
L 

C
od

e 
fr

om
 S

im
u

lin
k

Sc
iE

ng
in

ee
r’s

 T
ra

in
in

g 
Se

rv
ic

es




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

